什么是MySQL

MySQL 是一种关系型数据库,在Java企业级开发中非常常用,因为 MySQL 是开源免费的,并且方便扩展。阿里巴巴数据库系统也大量用到了 MySQL,因此它的稳定性是有保障的。MySQL是开放源代码的,因此任何人都可以在 GPL(General Public License) 的许可下下载并根据个性化的需要对其进行修改。MySQL的默认端口号是3306

储存引擎

查看MySQL提供的所有存储引擎

1
mysql> show engines;

image-20210218193115730

从上图我们可以查看出 MySQL 当前默认的存储引擎是InnoDB,并且在5.7版本所有的存储引擎中只有 InnoDB 是事务性存储引擎,也就是说只有 InnoDB 支持事务。

MyISAM和InnoDB区别

MyISAM是MySQL的默认数据库引擎(5.5版之前)。虽然性能极佳,而且提供了大量的特性,包括全文索引、压缩、空间函数等,但MyISAM不支持事务和行级锁,而且最大的缺陷就是崩溃后无法安全恢复。不过,5.5版本之后,MySQL引入了InnoDB(事务性数据库引擎),MySQL 5.5版本后默认的存储引擎为InnoDB。

大多数时候我们使用的都是 InnoDB 存储引擎,但是在某些情况下使用 MyISAM 也是合适的比如读密集的情况下。(如果你不介意 MyISAM 崩溃恢复问题的话)。

两者的对比:

  1. 是否支持行级锁 : MyISAM 只有表级锁(table-level locking),而InnoDB 支持行级锁(row-level locking)和表级锁,默认为行级锁。
  2. 是否支持事务和崩溃后的安全恢复: MyISAM 强调的是性能,每次查询具有原子性,其执行速度比InnoDB类型更快,但是不提供事务支持。但是InnoDB 提供事务支持,外部键等高级数据库功能。 具有事务(commit)、回滚(rollback)和崩溃修复能力(crash recovery capabilities)的事务安全(transaction-safe (ACID compliant))型表。
  3. 是否支持外键: MyISAM不支持,而InnoDB支持。
  4. 是否支持MVCC :仅 InnoDB 支持。应对高并发事务, MVCC比单纯的加锁更高效;MVCC只在 READ COMMITTEDREPEATABLE READ 两个隔离级别下工作;MVCC可以使用 乐观(optimistic)锁 和 悲观(pessimistic)锁来实现;各数据库中MVCC实现并不统一。推荐阅读:MySQL-InnoDB-MVCC多版本并发控制
  5. ……

《MySQL高性能》上面有一句话这样写到:

不要轻易相信“MyISAM比InnoDB快”之类的经验之谈,这个结论往往不是绝对的。在很多我们已知场景中,InnoDB的速度都可以让MyISAM望尘莫及,尤其是用到了聚簇索引,或者需要访问的数据都可以放入内存的应用。

一般情况下我们选择 InnoDB 都是没有问题的,但是某些情况下你并不在乎可扩展能力和并发能力,也不需要事务支持,也不在乎崩溃后的安全恢复问题的话,选择MyISAM也是一个不错的选择。但是一般情况下,我们都是需要考虑到这些问题的。

字符集及校对规则

字符集指的是一种从二进制编码到某类字符符号的映射。校对规则则是指某种字符集下的排序规则。MySQL中每一种字符集都会对应一系列的校对规则。

MySQL采用的是类似继承的方式指定字符集的默认值,每个数据库以及每张数据表都有自己的默认值,他们逐层继承。比如:某个库中所有表的默认字符集将是该数据库所指定的字符集(这些表在没有指定字符集的情况下,才会采用默认字符集) PS:整理自《Java工程师修炼之道》

索引

MySQL索引使用的数据结构主要有BTree索引哈希索引 。对于哈希索引来说,底层的数据结构就是哈希表,因此在绝大多数需求为单条记录查询的时候,可以选择哈希索引,查询性能最快;其余大部分场景,建议选择BTree索引。

MySQL的BTree索引使用的是B树中的B+Tree,但对于主要的两种存储引擎的实现方式是不同的。

  • MyISAM: B+Tree叶节点的data域存放的是数据记录的地址。在索引检索的时候,首先按照B+Tree搜索算法搜索索引,如果指定的Key存在,则取出其 data 域的值,然后以 data 域的值为地址读取相应的数据记录。这被称为“非聚簇索引”。
  • InnoDB: 其数据文件本身就是索引文件。相比MyISAM,索引文件和数据文件是分离的,其表数据文件本身就是按B+Tree组织的一个索引结构,树的叶节点data域保存了完整的数据记录。这个索引的key是数据表的主键,因此InnoDB表数据文件本身就是主索引。这被称为“聚簇索引(或聚集索引)”。而其余的索引都作为辅助索引,辅助索引的data域存储相应记录主键的值而不是地址,这也是和MyISAM不同的地方。在根据主索引搜索时,直接找到key所在的节点即可取出数据;在根据辅助索引查找时,则需要先取出主键的值,再走一遍主索引。 因此,在设计表的时候,不建议使用过长的字段作为主键,也不建议使用非单调的字段作为主键,这样会造成主索引频繁分裂。 PS:整理自《Java工程师修炼之道》

什么是事务

事务是逻辑上的一组操作,要么都执行,要么都不执行。

事务最经典也经常被拿出来说例子就是转账了。假如小明要给小红转账1000元,这个转账会涉及到两个关键操作就是:将小明的余额减少1000元,将小红的余额增加1000元。万一在这两个操作之间突然出现错误比如银行系统崩溃,导致小明余额减少而小红的余额没有增加,这样就不对了。事务就是保证这两个关键操作要么都成功,要么都要失败。

事务的四大特性(ACID)

  1. 原子性(Atomicity): 事务是最小的执行单位,不允许分割。事务的原子性确保动作要么全部完成,要么完全不起作用;
  2. 一致性(Consistency): 执行事务后,数据库从一个正确的状态变化到另一个正确的状态;
  3. 隔离性(Isolation): 并发访问数据库时,一个用户的事务不被其他事务所干扰,各并发事务之间数据库是独立的;
  4. 持久性(Durability): 一个事务被提交之后。它对数据库中数据的改变是持久的,即使数据库发生故障也不应该对其有任何影响。

并发事务带来哪些问题

  • 脏读(Dirty read): 当一个事务正在访问数据并且对数据进行了修改,而这种修改还没有提交到数据库中,这时另外一个事务也访问了这个数据,然后使用了这个数据。因为这个数据是还没有提交的数据,那么另外一个事务读到的这个数据是“脏数据”,依据“脏数据”所做的操作可能是不正确的。
  • 丢失修改(Lost to modify): 指在一个事务读取一个数据时,另外一个事务也访问了该数据,那么在第一个事务中修改了这个数据后,第二个事务也修改了这个数据。这样第一个事务内的修改结果就被丢失,因此称为丢失修改。 例如:事务1读取某表中的数据A=20,事务2也读取A=20,事务1修改A=A-1,事务2也修改A=A-1,最终结果A=19,事务1的修改被丢失。
  • 不可重复读(Unrepeatableread): 指在一个事务内多次读同一数据。在这个事务还没有结束时,另一个事务也访问该数据。那么,在第一个事务中的两次读数据之间,由于第二个事务的修改导致第一个事务两次读取的数据可能不太一样。这就发生了在一个事务内两次读到的数据是不一样的情况,因此称为不可重复读。
  • 幻读(Phantom read): 幻读与不可重复读类似。它发生在一个事务(T1)读取了几行数据,接着另一个并发事务(T2)插入了一些数据时。在随后的查询中,第一个事务(T1)就会发现多了一些原本不存在的记录,就好像发生了幻觉一样,所以称为幻读。

不可重复读和幻读区别:

不可重复读的重点是修改比如多次读取一条记录发现其中某些列的值被修改,幻读的重点在于新增或者删除比如多次读取一条记录发现记录增多或减少了。

事务的隔离级别有哪些?MySQL的默认隔离级别是什么?

SQL 标准定义了四个隔离级别:

  • READ-UNCOMMITTED(读取未提交): 最低的隔离级别,允许读取尚未提交的数据变更,可能会导致脏读、幻读或不可重复读
  • READ-COMMITTED(读取已提交): 允许读取并发事务已经提交的数据,可以阻止脏读,但是幻读或不可重复读仍有可能发生
  • REPEATABLE-READ(可重复读): 对同一字段的多次读取结果都是一致的,除非数据是被本身事务自己所修改,可以阻止脏读和不可重复读,但幻读仍有可能发生
  • SERIALIZABLE(可串行化): 最高的隔离级别,完全服从ACID的隔离级别。所有的事务依次逐个执行,这样事务之间就完全不可能产生干扰,也就是说,该级别可以防止脏读、不可重复读以及幻读

隔离级别 脏读 不可重复读 幻影读
READ-UNCOMMITTED
READ-COMMITTED ×
REPEATABLE-READ × ×
SERIALIZABLE × × ×

MySQL InnoDB 存储引擎的默认支持的隔离级别是 REPEATABLE-READ(可重读)。我们可以通过SELECT @@tx_isolation;命令来查看,MySQL 8.0 该命令改为SELECT @@transaction_isolation;

1
2
3
4
5
6
mysql> SELECT @@tx_isolation;
+-----------------+
| @@tx_isolation |
+-----------------+
| REPEATABLE-READ |
+-----------------+Copy to clipboardErrorCopied

这里需要注意的是:与 SQL 标准不同的地方在于 InnoDB 存储引擎在 REPEATABLE-READ(可重读) 事务隔离级别下使用的是Next-Key Lock 锁算法,因此可以避免幻读的产生,这与其他数据库系统(如 SQL Server) 是不同的。所以说InnoDB 存储引擎的默认支持的隔离级别是 REPEATABLE-READ(可重读) 已经可以完全保证事务的隔离性要求,即达到了 SQL标准的 SERIALIZABLE(可串行化) 隔离级别。因为隔离级别越低,事务请求的锁越少,所以大部分数据库系统的隔离级别都是 READ-COMMITTED(读取提交内容) ,但是你要知道的是InnoDB 存储引擎默认使用 REPEAaTABLE-READ(可重读) 并不会有任何性能损失。

InnoDB 存储引擎在 分布式事务 的情况下一般会用到 SERIALIZABLE(可串行化) 隔离级别。

锁机制与InnoDB锁算法

MyISAM和InnoDB存储引擎使用的锁:

  • MyISAM采用表级锁(table-level locking)。
  • InnoDB支持行级锁(row-level locking)和表级锁,默认为行级锁

表级锁和行级锁对比:

  • 表级锁: MySQL中锁定 粒度最大 的一种锁,对当前操作的整张表加锁,实现简单,资源消耗也比较少,加锁快,不会出现死锁。其锁定粒度最大,触发锁冲突的概率最高,并发度最低,MyISAM和 InnoDB引擎都支持表级锁。
  • 行级锁: MySQL中锁定 粒度最小 的一种锁,只针对当前操作的行进行加锁。 行级锁能大大减少数据库操作的冲突。其加锁粒度最小,并发度高,但加锁的开销也最大,加锁慢,会出现死锁。

InnoDB存储引擎的锁的算法有三种:

  • Record lock:单个行记录上的锁
  • Gap lock:间隙锁,锁定一个范围,不包括记录本身
  • Next-key lock:record+gap 锁定一个范围,包含记录本身

相关知识点:

  1. innodb对于行的查询使用next-key lock
  2. Next-locking keying为了解决Phantom Problem幻读问题
  3. 当查询的索引含有唯一属性时,将next-key lock降级为record key
  4. Gap锁设计的目的是为了阻止多个事务将记录插入到同一范围内,而这会导致幻读问题的产生
  5. 有两种方式显式关闭gap锁:(除了外键约束和唯一性检查外,其余情况仅使用record lock) A. 将事务隔离级别设置为RC B. 将参数innodb_locks_unsafe_for_binlog设置为1

大表优化

限定数据的范围

务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内;

读写分离

经典的数据库拆分方案,主库负责写,从库负责读;

垂直分区

根据数据库里面数据表的相关性进行拆分。 例如,用户表中既有用户的登录信息又有用户的基本信息,可以将用户表拆分成两个单独的表,甚至放到单独的库做分库。

简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。 如下图所示,这样来说大家应该就更容易理解了。

数据库垂直分区

  • 垂直拆分的优点: 可以使得列数据变小,在查询时减少读取的Block数,减少I/O次数。此外,垂直分区可以简化表的结构,易于维护。
  • 垂直拆分的缺点: 主键会出现冗余,需要管理冗余列,并会引起Join操作,可以通过在应用层进行Join来解决。此外,垂直分区会让事务变得更加复杂;

水平分区

保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。 水平拆分可以支撑非常大的数据量。

水平拆分是指数据表行的拆分,表的行数超过200万行时,就会变慢,这时可以把一张的表的数据拆成多张表来存放。举个例子:我们可以将用户信息表拆分成多个用户信息表,这样就可以避免单一表数据量过大对性能造成影响。

数据库水平拆分

水平拆分可以支持非常大的数据量。需要注意的一点是:分表仅仅是解决了单一表数据过大的问题,但由于表的数据还是在同一台机器上,其实对于提升MySQL并发能力没有什么意义,所以 水平拆分最好分库

水平拆分能够 支持非常大的数据量存储,应用端改造也少,但 分片事务难以解决 ,跨节点Join性能较差,逻辑复杂。《Java工程师修炼之道》的作者推荐 尽量不要对数据进行分片,因为拆分会带来逻辑、部署、运维的各种复杂度 ,一般的数据表在优化得当的情况下支撑千万以下的数据量是没有太大问题的。如果实在要分片,尽量选择客户端分片架构,这样可以减少一次和中间件的网络I/O。

下面补充一下数据库分片的两种常见方案:

  • 客户端代理: 分片逻辑在应用端,封装在jar包中,通过修改或者封装JDBC层来实现。 当当网的 Sharding-JDBC 、阿里的TDDL是两种比较常用的实现。
  • 中间件代理: 在应用和数据中间加了一个代理层。分片逻辑统一维护在中间件服务中。 我们现在谈的 Mycat 、360的Atlas、网易的DDB等等都是这种架构的实现。

什么是池化思想?什么是数据库连接池?为什么需要数据库连接池?

池化设计应该不是一个新名词。我们常见的如java线程池、jdbc连接池、redis连接池等就是这类设计的代表实现。这种设计会初始预设资源,解决的问题就是抵消每次获取资源的消耗,如创建线程的开销,获取远程连接的开销等。就好比你去食堂打饭,打饭的大妈会先把饭盛好几份放那里,你来了就直接拿着饭盒加菜即可,不用再临时又盛饭又打菜,效率就高了。除了初始化资源,池化设计还包括如下这些特征:池子的初始值、池子的活跃值、池子的最大值等,这些特征可以直接映射到java线程池和数据库连接池的成员属性中。这篇文章对池化设计思想介绍的还不错,直接复制过来,避免重复造轮子了。

数据库连接本质就是一个 socket 的连接。数据库服务端还要维护一些缓存和用户权限信息之类的 所以占用了一些内存。我们可以把数据库连接池是看做是维护的数据库连接的缓存,以便将来需要对数据库的请求时可以重用这些连接。为每个用户打开和维护数据库连接,尤其是对动态数据库驱动的网站应用程序的请求,既昂贵又浪费资源。在连接池中,创建连接后,将其放置在池中,并再次使用它,因此不必建立新的连接。如果使用了所有连接,则会建立一个新连接并将其添加到池中。 连接池还减少了用户必须等待建立与数据库的连接的时间。

分库分表后,id主键如何处理

因为要是分成多个表之后,每个表都是从 1 开始累加,这样是不对的,我们需要一个全局唯一的 id 来支持。

生成全局 id 有下面这几种方式:

  • UUID:不适合作为主键,因为太长了,并且无序不可读,查询效率低。比较适合用于生成唯一的名字的标示比如文件的名字。
  • 数据库自增 id : 两台数据库分别设置不同步长,生成不重复ID的策略来实现高可用。这种方式生成的 id 有序,但是需要独立部署数据库实例,成本高,还会有性能瓶颈。
  • 利用 redis 生成 id : 性能比较好,灵活方便,不依赖于数据库。但是,引入了新的组件造成系统更加复杂,可用性降低,编码更加复杂,增加了系统成本。
  • Twitter的snowflake算法 :Github 地址:https://github.com/twitter-archive/snowflake。
  • 美团的Leaf分布式ID生成系统 :Leaf 是美团开源的分布式ID生成器,能保证全局唯一性、趋势递增、单调递增、信息安全,里面也提到了几种分布式方案的对比,但也需要依赖关系数据库、Zookeeper等中间件。感觉还不错。美团技术团队的一篇文章:https://tech.meituan.com/2017/04/21/mt-leaf.html
  • ……

一条SQL语句是如何执行的

查询语句

1
select * from tb_student  A where A.age='18' and A.name=' 张三 ';
  • 先检查该语句是否有权限,如果没有权限,直接返回错误信息,如果有权限,在 MySQL8.0 版本以前,会先查询缓存,以这条 sql 语句为 key 在内存中查询是否有结果,如果有直接缓存,如果没有,执行下一步。
  • 通过分析器进行词法分析,提取 sql 语句的关键元素,比如提取上面这个语句是查询 select,提取需要查询的表名为 tb_student,需要查询所有的列,查询条件是这个表的 id=’1’。然后判断这个 sql 语句是否有语法错误,比如关键词是否正确等等,如果检查没问题就执行下一步。
  • 接下来就是优化器进行确定执行方案,上面的 sql 语句,可以有两种执行方案:
1
2
a.先查询学生表中姓名为“张三”的学生,然后判断是否年龄是 18。  
b.先找出学生中年龄 18 岁的学生,然后再查询姓名为“张三”的学生。

​ 那么优化器根据自己的优化算法进行选择执行效率最好的一个方案(优化器认为,有时候不一定最好)。那么确认了执行计划后就准备开始执行了。

  • 进行权限校验,如果没有权限就会返回错误信息,如果有权限就会调用数据库引擎接口,返回引擎的执行结果。

更新语句

1
update tb_student A set A.age='19' where A.name=' 张三 ';

我们来给张三修改下年龄,在实际数据库肯定不会设置年龄这个字段的,不然要被技术负责人打的。其实条语句也基本上会沿着上一个查询的流程走,只不过执行更新的时候肯定要记录日志啦,这就会引入日志模块了,MySQL 自带的日志模块式 binlog(归档日志) ,所有的存储引擎都可以使用,我们常用的 InnoDB 引擎还自带了一个日志模块 redo log(重做日志),我们就以 InnoDB 模式下来探讨这个语句的执行流程。流程如下:

  • 先查询到张三这一条数据,如果有缓存,也是会用到缓存。
  • 然后拿到查询的语句,把 age 改为 19,然后调用引擎 API 接口,写入这一行数据,InnoDB 引擎把数据保存在内存中,同时记录 redo log,此时 redo log 进入 prepare 状态,然后告诉执行器,执行完成了,随时可以提交。
  • 执行器收到通知后记录 binlog,然后调用引擎接口,提交 redo log 为提交状态。
  • 更新完成。

这里肯定有同学会问,为什么要用两个日志模块,用一个日志模块不行吗?

这是因为最开始 MySQL 并没与 InnoDB 引擎( InnoDB 引擎是其他公司以插件形式插入 MySQL 的) ,MySQL 自带的引擎是 MyISAM,但是我们知道 redo log 是 InnoDB 引擎特有的,其他存储引擎都没有,这就导致会没有 crash-safe 的能力(crash-safe 的能力即使数据库发生异常重启,之前提交的记录都不会丢失),binlog 日志只能用来归档。

并不是说只用一个日志模块不可以,只是 InnoDB 引擎就是通过 redo log 来支持事务的。那么,又会有同学问,我用两个日志模块,但是不要这么复杂行不行,为什么 redo log 要引入 prepare 预提交状态?这里我们用反证法来说明下为什么要这么做?

  • 先写 redo log 直接提交,然后写 binlog,假设写完 redo log 后,机器挂了,binlog 日志没有被写入,那么机器重启后,这台机器会通过 redo log 恢复数据,但是这个时候 bingog 并没有记录该数据,后续进行机器备份的时候,就会丢失这一条数据,同时主从同步也会丢失这一条数据。
  • 先写 binlog,然后写 redo log,假设写完了 binlog,机器异常重启了,由于没有 redo log,本机是无法恢复这一条记录的,但是 binlog 又有记录,那么和上面同样的道理,就会产生数据不一致的情况。

如果采用 redo log 两阶段提交的方式就不一样了,写完 binglog 后,然后再提交 redo log 就会防止出现上述的问题,从而保证了数据的一致性。那么问题来了,有没有一个极端的情况呢?假设 redo log 处于预提交状态,binglog 也已经写完了,这个时候发生了异常重启会怎么样呢? 这个就要依赖于 MySQL 的处理机制了,MySQL 的处理过程如下:

  • 判断 redo log 是否完整,如果判断是完整的,就立即提交。
  • 如果 redo log 只是预提交但不是 commit 状态,这个时候就会去判断 binlog 是否完整,如果完整就提交 redo log, 不完整就回滚事务。

这样就解决了数据一致性的问题。

SQL语句执行很慢

一个 SQL 执行的很慢,我们要分两种情况讨论:

  • 大多数情况下很正常,偶尔很慢,则有如下原因

    • 数据库在刷新脏页,例如 redo log 写满了需要同步到磁盘。
    • 执行的时候,遇到锁,如表锁、行锁。
  • 这条 SQL 语句一直执行的很慢,则有如下原因。

    • 没有用上索引:例如该字段没有索引;由于对字段进行运算、函数操作导致无法用索引。
    • 数据库选错了索引。

什么是索引

索引是一种用于快速查询和检索数据的数据结构。常见的索引结构有: B 树, B+树和 Hash。

索引的作用就相当于目录的作用。打个比方: 我们在查字典的时候,如果没有目录,那我们就只能一页一页的去找我们需要查的那个字,速度很慢。如果有目录了,我们只需要先去目录里查找字的位置,然后直接翻到那一页就行了。

为什么要用索引?索引的优缺点分析

索引的优点

可以大大加快 数据的检索速度(大大减少的检索的数据量), 这也是创建索引的最主要的原因。毕竟大部分系统的读请求总是大于写请求的。 另外,通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。

索引的缺点

  1. 创建索引和维护索引需要耗费许多时间:当对表中的数据进行增删改的时候,如果数据有索引,那么索引也需要动态的修改,会降低 SQL 执行效率。
  2. 占用物理存储空间 :索引需要使用物理文件存储,也会耗费一定空间。

时间和空间

B树和B+树的区别

  • B 树的所有节点既存放 键(key) 也存放 数据(data);而 B+树只有叶子节点存放 key 和 data,其他内节点只存放 key。
  • B 树的叶子节点都是独立的;B+树的叶子节点有一条引用链指向与它相邻的叶子节点。
  • B 树的检索的过程相当于对范围内的每个节点的关键字做二分查找,可能还没有到达叶子节点,检索就结束了。而 B+树的检索效率就很稳定了,任何查找都是从根节点到叶子节点的过程,叶子节点的顺序检索很明显。

B+树

Hash索引和B+树索引优劣分析

Hash 索引定位快

Hash 索引指的就是 Hash 表,最大的优点就是能够在很短的时间内,根据 Hash 函数定位到数据所在的位置,这是 B+树所不能比的。

Hash 冲突问题

知道 HashMap 或 HashTable 的同学,相信都知道它们最大的缺点就是 Hash 冲突了。不过对于数据库来说这还不算最大的缺点。

Hash 索引不支持顺序和范围查询(Hash 索引不支持顺序和范围查询是它最大的缺点。

hash是离散的

试想一种情况:

1
SELECT * FROM tb1 WHERE id < 500;

B+树是有序的,在这种范围查询中,优势非常大,直接遍历比 500 小的叶子节点就够了。而 Hash 索引是根据 hash 算法来定位的,难不成还要把 1 - 499 的数据,每个都进行一次 hash 计算来定位吗?这就是 Hash 最大的缺点了。

索引类型

主键索引(Primary Key)

数据表的主键列使用的就是主键索引。

一张数据表有只能有一个主键,并且主键不能为 null,不能重复。

在 mysql 的 InnoDB 的表中,当没有显示的指定表的主键时,InnoDB 会自动先检查表中是否有唯一索引的字段,如果有,则选择该字段为默认的主键,否则 InnoDB 将会自动创建一个 6Byte 的自增主键。

二级索引(辅助索引)

二级索引又称为辅助索引,是因为二级索引的叶子节点储存的数据是主键。也就是说通过二级索引可以定位主键位置。

唯一索引,普通索引,前缀索引等索引属于二级索引。

  1. 唯一索引(Unique Key) :唯一索引也是一种约束。唯一索引的属性列不能出现重复的数据,但是允许数据为 NULL,一张表允许创建多个唯一索引。 建立唯一索引的目的大部分时候都是为了该属性列的数据的唯一性,而不是为了查询效率。
  2. 普通索引(Index)普通索引的唯一作用就是为了快速查询数据,一张表允许创建多个普通索引,并允许数据重复和 NULL。
  3. 前缀索引(Prefix) :前缀索引只适用于字符串类型的数据。前缀索引是对文本的前几个字符创建索引,相比普通索引建立的数据更小, 因为只取前几个字符。
  4. 全文索引(Full Text) :全文索引主要是为了检索大文本数据中的关键字的信息,是目前搜索引擎数据库使用的一种技术。Mysql5.6 之前只有 MYISAM 引擎支持全文索引,5.6 之后 InnoDB 也支持了全文索引。

B+树二级索引(/images/database-mysql/B+%E6%A0%91%E4%BA%8C%E7%BA%A7%E7%B4%A2%E5%BC%95(%E8%BE%85%E5%8A%A9%E7%B4%A2%E5%BC%95).png).png)

聚集索引和非聚集索引

聚集索引

聚集索引即索引结构和数据一起存放的索引。主键索引属于聚集索引。

在 Mysql 中,InnoDB 引擎的表的 .ibd文件就包含了该表的索引和数据,对于 InnoDB 引擎表来说,该表的索引(B+树)的每个非叶子节点存储索引,叶子节点存储索引和索引对应的数据。

聚集索引的优点

聚集索引的查询速度非常的快,因为整个 B+树本身就是一颗多叉平衡树,叶子节点也都是有序的,定位到索引的节点,就相当于定位到了数据。

聚集索引的缺点

  1. 依赖于有序的数据 :因为 B+树是多路平衡树,如果索引的数据不是有序的,那么就需要在插入时排序,如果数据是整型还好,否则类似于字符串或 UUID 这种又长又难比较的数据,插入或查找的速度肯定比较慢。
  2. 更新代价大 : 如果对索引列的数据被修改时,那么对应的索引也将会被修改, 而且况聚集索引的叶子节点还存放着数据,修改代价肯定是较大的, 所以对于主键索引来说,主键一般都是不可被修改的。

非聚集索引

非聚集索引即索引结构和数据分开存放的索引。

二级索引属于非聚集索引。(节点value存的是主键)

MYISAM 引擎的表的.MYI 文件包含了表的索引, 该表的索引(B+树)的每个叶子非叶子节点存储索引, 叶子节点存储索引和索引对应数据的指针,指向.MYD 文件的数据。

非聚集索引的叶子节点并不一定存放数据的指针, 因为二级索引的叶子节点就存放的是主键,根据主键再回表查数据。

非聚集索引的优点

更新代价比聚集索引要小 。非聚集索引的更新代价就没有聚集索引那么大了,非聚集索引的叶子节点是不存放数据的

非聚集索引的缺点

  1. 跟聚集索引一样,非聚集索引也依赖于有序的数据
  2. 可能会二次查询(回表) :这应该是非聚集索引最大的缺点了。 当查到索引对应的指针或主键后,可能还需要根据指针或主键再到数据文件或表中查询。

B+树索引

非聚集索引一定要回表查询吗?

非聚集索引不一定回表查询。

试想一种情况,用户准备使用 SQL 查询用户名,而用户名字段正好建立了索引。

1
SELECT name FROM table WHERE name='guang19';

那么这个索引的 key 本身就是 name,查到对应的 name 直接返回就行了,无需回表查询。

即使是 MYISAM 也是这样,虽然 MYISAM 的主键索引确实需要回表, 因为它的主键索引的叶子节点存放的是指针。但是如果 SQL 查的就是主键呢?

1
SELECT id FROM table WHERE id=1;

主键索引本身的 key 就是主键,查到返回就行了。这种情况就称之为覆盖索引了。

即查主键或者查找的字段建立了索引的不需要回表查询。

覆盖索引

如果一个索引包含(或者说覆盖)所有需要查询的字段的值,我们就称之为“覆盖索引”。我们知道在 InnoDB 存储引擎中,如果不是主键索引,叶子节点存储的是主键+列值。最终还是要“回表”,也就是要通过主键再查找一次。这样就会比较慢覆盖索引就是把要查询出的列和索引是对应的,不做回表操作!

覆盖索引即需要查询的字段正好是索引的字段,那么直接根据该索引,就可以查到数据了, 而无需回表查询。

如主键索引,如果一条 SQL 需要查询主键,那么正好根据主键索引就可以查到主键。

再如普通索引,如果一条 SQL 需要查询 name,name 字段正好有索引, 那么直接根据这个索引就可以查到数据,也无需回表。

B+树覆盖索引

索引创建原则

单列索引

单列索引即由一列属性组成的索引。

联合索引(多列索引)

联合索引即由多列属性组成索引。

最左前缀原则

假设创建的联合索引由三个字段组成:

1
ALTER TABLE table ADD INDEX index_name (num,name,age)

那么当查询的条件有为:num / (num AND name) / (num AND name AND age)时,索引才生效。所以在创建联合索引时,尽量把查询最频繁的那个字段作为最左(第一个)字段。查询的时候也尽量以这个字段为第一条件。

索引创建注意点

最左前缀原则

选择合适的字段

不为NULL的字段

索引字段的数据应该尽量不为 NULL,因为对于数据为 NULL 的字段,数据库较难优化。如果字段频繁被查询,但又避免不了为 NULL,建议使用 0,1,true,false 这样语义较为清晰的短值或短字符作为替代。

被频繁查询的字段

我们创建索引的字段应该是查询操作非常频繁的字段。

被作为条件查询的字段

被作为 WHERE 条件查询的字段,应该被考虑建立索引。

被经常频繁用于连接的字段

经常用于连接的字段可能是一些外键列,对于外键列并不一定要建立外键,只是说该列涉及到表与表的关系。对于频繁被连接查询的字段,可以考虑建立索引,提高多表连接查询的效率。

不合适从创建索引的字段

被频繁更新的字段

虽然索引能带来查询上的效率,但是维护索引的成本也是不小的。 如果一个字段不被经常查询,反而被经常修改,那么就更不应该在这种字段上建立索引了。

不被经常查询的字段

尽可能的考虑建立联合索引而不是单列索引

因为索引是需要占用磁盘空间的,可以简单理解为每个索引都对应着一颗 B+树。如果一个表的字段过多,索引过多,那么当这个表的数据达到一个体量后,索引占用的空间也是很多的,且修改索引时,耗费的时间也是较多的。如果是联合索引,多个字段在一个索引上,那么将会节约很大磁盘空间,且修改数据的操作效率也会提升。

注意避免冗余索引

冗余索引指的是索引的功能相同,能够命中 就肯定能命中 ,那么 就是冗余索引如(name,city )和(name )这两个索引就是冗余索引,能够命中后者的查询肯定是能够命中前者的 在大多数情况下,都应该尽量扩展已有的索引而不是创建新索引。

考虑在字符串类型的字段上使用前缀索引代替普通索引

前缀索引仅限于字符串类型,较普通索引会占用更小的空间,所以可以考虑使用前缀索引带替普通索引。

使用索引一定能提高查询性能吗

大多数情况下,索引查询都是比全表扫描要快的。但是如果数据库的数据量不大,那么使用索引也不一定能够带来很大提升。

封锁

封锁粒度

MySQL 中提供了两种封锁粒度:行级锁以及表级锁。

应该尽量只锁定需要修改的那部分数据,而不是所有的资源。锁定的数据量越少,发生锁争用的可能就越小,系统的并发程度就越高。

但是加锁需要消耗资源,锁的各种操作(包括获取锁、释放锁、以及检查锁状态)都会增加系统开销。因此封锁粒度越小,系统开销就越大。

在选择封锁粒度时,需要在锁开销和并发程度之间做一个权衡。

封锁类型

读写锁

  • 互斥锁(Exclusive),简写为 X 锁,又称写锁。
  • 共享锁(Shared),简写为 S 锁,又称读锁。

有以下两个规定:

  • 一个事务对数据对象 A 加了 X 锁,就可以对 A 进行读取和更新。加锁期间其它事务不能对 A 加任何锁。
  • 一个事务对数据对象 A 加了 S 锁,可以对 A 进行读取操作,但是不能进行更新操作。加锁期间其它事务能对 A 加 S 锁,但是不能加 X 锁。

锁的兼容关系如下:

img

意向锁

使用意向锁(Intention Locks)可以更容易地支持多粒度封锁。

在存在行级锁和表级锁的情况下,事务 T 想要对表 A 加 X 锁,就需要先检测是否有其它事务对表 A 或者表 A 中的任意一行加了锁,那么就需要对表 A 的每一行都检测一次,这是非常耗时的。

意向锁在原来的 X/S 锁之上引入了 IX/IS,IX/IS 都是表锁,用来表示一个事务想要在表中的某个数据行上加 X 锁或 S 锁。有以下两个规定:

  • 一个事务在获得某个数据行对象的 S 锁之前,必须先获得表的 IS 锁或者更强的锁;
  • 一个事务在获得某个数据行对象的 X 锁之前,必须先获得表的 IX 锁。

通过引入意向锁,事务 T 想要对表 A 加 X 锁,只需要先检测是否有其它事务对表 A 加了 X/IX/S/IS 锁,如果加了就表示有其它事务正在使用这个表或者表中某一行的锁,因此事务 T 加 X 锁失败。

各种锁的兼容关系如下:

img

解释如下:

  • 任意 IS/IX 锁之间都是兼容的,因为它们只表示想要对表加锁,而不是真正加锁;
  • 这里兼容关系针对的是表级锁,而表级的 IX 锁和行级的 X 锁兼容,两个事务可以对两个数据行加 X 锁。(事务 T1 想要对数据行 R1 加 X 锁,事务 T2 想要对同一个表的数据行 R2 加 X 锁,两个事务都需要对该表加 IX 锁,但是 IX 锁是兼容的,并且 IX 锁与行级的 X 锁也是兼容的,因此两个事务都能加锁成功,对同一个表中的两个数据行做修改。)

封锁协议

三级封锁协议

一级封锁协议

事务 T 要修改数据 A 时必须加 X 锁,直到 T 结束才释放锁。

可以解决丢失修改问题,因为不能同时有两个事务对同一个数据进行修改,那么事务的修改就不会被覆盖。

img

二级封锁协议

在一级的基础上,要求读取数据 A 时必须加 S 锁,读取完马上释放 S 锁。

可以解决读脏数据问题,因为如果一个事务在对数据 A 进行修改,根据 1 级封锁协议,会加 X 锁,那么就不能再加 S 锁了,也就是不会读入数据。

img

三级封锁协议

在二级的基础上,要求读取数据 A 时必须加 S 锁,直到事务结束了才能释放 S 锁。

可以解决不可重复读的问题,因为读 A 时,其它事务不能对 A 加 X 锁,从而避免了在读的期间数据发生改变。

img

两端锁协议

加锁和解锁分为两个阶段进行。

可串行化调度是指,通过并发控制,使得并发执行的事务结果与某个串行执行的事务结果相同。串行执行的事务互不干扰,不会出现并发一致性问题。

事务遵循两段锁协议是保证可串行化调度的充分条件。例如以下操作满足两段锁协议,它是可串行化调度。

1
lock-x(A)...lock-s(B)...lock-s(C)...unlock(A)...unlock(C)...unlock(B)

但不是必要条件,例如以下操作不满足两段锁协议,但它还是可串行化调度。

1
lock-x(A)...unlock(A)...lock-s(B)...unlock(B)...lock-s(C)...unlock(C)

MySQL隐式与显示锁定

MySQL 的 InnoDB 存储引擎采用两段锁协议,会根据隔离级别在需要的时候自动加锁,并且所有的锁都是在同一时刻被释放,这被称为隐式锁定。

InnoDB 也可以使用特定的语句进行显示锁定:

1
2
SELECT ... LOCK In SHARE MODE;
SELECT ... FOR UPDATE;