BFS

img

广度优先搜索一层一层地进行遍历,每层遍历都是以上一层遍历的结果作为起点,遍历一个距离能访问到的所有节点。需要注意的是,遍历过的节点不能再次被遍历。

第一层:

  • 0 -> {6,2,1,5}

第二层:

  • 6 -> {4}
  • 2 -> {}
  • 1 -> {}
  • 5 -> {3}

第三层:

  • 4 -> {}
  • 3 -> {}

每一层遍历的节点都与根节点距离相同。设 di 表示第 i 个节点与根节点的距离,推导出一个结论:对于先遍历的节点 i 与后遍历的节点 j,有 di <= dj。利用这个结论,可以求解最短路径等。

最优解 问题:第一次遍历到目的节点,其所经过的路径为最短路径。应该注意的是,使用 BFS 只能求解无权图的最短路径,无权图是指从一个节点到另一个节点的代价都记为 1。

在程序实现 BFS 时需要考虑以下问题:

  • 队列:用来存储每一轮遍历得到的节点;
  • 标记:对于遍历过的节点,应该将它标记,防止重复遍历。

二进制矩阵中的最短路径

力扣

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import cn.hutool.core.lang.Pair;

import java.util.LinkedList;
import java.util.Queue;

//leetcode submit region begin(Prohibit modification and deletion)
class Solution {
public int shortestPathBinaryMatrix(int[][] grid) {
if (grid == null || grid.length == 0 || grid[0].length == 0) {
return -1;
}

int[][] directions = {{-1, -1}, {1, 0}, {1, 1}, {0, 1}, {-1, 0}, {0, -1}, {-1, 1}, {1, -1}};
int m = grid.length, n = grid[0].length;
Queue<Pair<Integer, Integer>> queue = new LinkedList<>();
queue.add(new Pair<>(0, 0));
int pathLength = 0;
while (!queue.isEmpty()) {
int size = queue.size();
pathLength++;
while (size-- > 0) {
Pair<Integer, Integer> cur = queue.poll();
int cr = cur.getKey(), cc = cur.getValue();
if (grid[cr][cc] == 1) {
continue;
}
//到达终点,终止条件
if (cr == m - 1 && cc == n - 1) {
return pathLength;
}
//直接用1来标记不能通过
grid[cr][cc] = 1;
for (int[] dic : directions) {
int nr = cr + dic[0], nc = cc + dic[1];
if (nr < 0 || nr >= m || nc < 0 || nc >= n) {
continue;
}
queue.add(new Pair<>(nr, nc));
}
}
}
return -1;
}
}

完全平方数

力扣

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
class Solution {
public int numSquares(int n) {
List<Integer> squares = new ArrayList<>();
int square = 1, diff = 3;
//1,4,9...
while (square <= n) {
squares.add(square);
square += diff;
diff += 2;
}
Queue<Integer> queue = new LinkedList<>();
boolean[] marked = new boolean[n + 1];
int level = 0;
queue.add(n);
marked[n] = true;
while (!queue.isEmpty()) {
//广度优先,队列所有都要取出来
int size = queue.size();
level++;
while (size-- > 0) {
int cur = queue.poll();
for (int s : squares) {
int next = cur - s;
//从大到小,后面的一定都小于0,所以可以break
if (next < 0) {
break;
}
if (next == 0) {
return level;
}
if (marked[next]) {
continue;
}
marked[next] = true;
queue.add(next);
}
}
}
//n个1
return n;
}
}

单词接龙

力扣

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;

//leetcode submit region begin(Prohibit modification and deletion)
class Solution {
public int ladderLength(String beginWord, String endWord, List<String> wordList) {
wordList.add(beginWord);
int N = wordList.size();
int start = N - 1;
int end = 0;
while (end < N && !wordList.get(end).equals(endWord)) {
end++;
}
if (end == N) {
return 0;
}
List<Integer>[] graphic = buildGraphic(wordList);
return getShortestPath(graphic, start, end);
}

private List<Integer>[] buildGraphic(List<String> wordList) {
int N = wordList.size();
List<Integer>[] graphic = new List[N];
for (int i = 0; i < N; i++) {
graphic[i] = new ArrayList<>();
for (int j = 0; j < N; j++) {
if (isConnect(wordList.get(i), wordList.get(j))) {
graphic[i].add(j);
}
}
}
return graphic;
}

private boolean isConnect(String s1, String s2) {
int diffCnt = 0;
for (int i = 0; i < s1.length() && diffCnt <= 1; i++) {
if (s1.charAt(i) != s2.charAt(i)) {
diffCnt++;
}
}
return diffCnt == 1;
}

private int getShortestPath(List<Integer>[] graphic, int start, int end) {
Queue<Integer> queue = new LinkedList<>();
boolean[] marked = new boolean[graphic.length];
queue.add(start);
marked[start] = true;
int path = 1;
while (!queue.isEmpty()) {
int size = queue.size();
path++;
while (size-- > 0) {
int cur = queue.poll();
for (int next : graphic[cur]) {
if (next == end) {
return path;
}
if (marked[next]) {
continue;
}
marked[next] = true;
queue.add(next);
}
}
}
return 0;
}

}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
//BFS
class Solution {
public int ladderLength(String beginWord, String endWord, List<String> wordList) {
if(!wordList.contains(endWord)){
return 0;
}
//已经访问过的结点
Set<String> visited = new HashSet<>();
//当前要访问结点存进的队列
Queue<String> queue =new LinkedList<>();
queue.offer(beginWord);
visited.add(beginWord);
int count=0;
while(queue.size()>0){
int size=queue.size();
++count;
//在当前要访问结点存进的队列里开始逐个检验,并且把结点的下一层放进队列里,BFS
for(int i=0;i<size;i++){
//每次都是最新要比较的单词 start
String start=queue.poll();
//因为有的单词已经遍历过,有的单词不满足转换会跳过,所以整个wordList遍历一次
for(String s:wordList){
//已遍历过,跳过看下一个单词
if(visited.contains(s)){
continue;
}
//不能转换一个字母变成这个单词的,也跳过
if(!canConvert(start,s)){
continue;
}
//没遍历过,又能转换的,当是最后转换成endWord时
if(s.equals(endWord)){
return ++count;
}
//没遍历过,又能转换的,还没到最后的end的
//存进visited,放入队列之后搜索
visited.add(s);
queue.offer(s);
}
}
}
return 0;
}
public boolean canConvert(String s1,String s2){
if(s1.length()!=s2.length()){
return false;
}
int count=0;
for(int i=0;i<s1.length();i++){
if(s1.charAt(i)!=s2.charAt(i)){
count++;
if(count>1){
return false;
}
}
}
return true;
}
}

DFS

img

广度优先搜索一层一层遍历,每一层得到的所有新节点,要用队列存储起来以备下一层遍历的时候再遍历。

而深度优先搜索在得到一个新节点时立即对新节点进行遍历:从节点 0 出发开始遍历,得到到新节点 6 时,立马对新节点 6 进行遍历,得到新节点 4;如此反复以这种方式遍历新节点,直到没有新节点了,此时返回。返回到根节点 0 的情况是,继续对根节点 0 进行遍历,得到新节点 2,然后继续以上步骤。

从一个节点出发,使用 DFS 对一个图进行遍历时,能够遍历到的节点都是从初始节点可达的,DFS 常用来求解这种 可达性 问题。

在程序实现 DFS 时需要考虑以下问题:

  • 栈:用栈来保存当前节点信息,当遍历新节点返回时能够继续遍历当前节点。可以使用递归栈。
  • 标记:和 BFS 一样同样需要对已经遍历过的节点进行标记。

岛屿的最大面积

力扣

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
class Solution {
private int m, n;
private int[][] directions = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};

public int maxAreaOfIsland(int[][] grid) {
if (grid == null || grid.length == 0) {
return 0;
}
m = grid.length;
n = grid[0].length;
int maxArea = 0;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
maxArea = Math.max(maxArea, dfs(grid, i, j));
}
}
return maxArea;
}

private int dfs(int[][] grid, int r, int c) {
//终止条件
if (r < 0 || r >= m || c < 0 || c >= n || grid[r][c] == 0) {
return 0;
}
//标记
grid[r][c] = 0;
int area = 1;
for (int[] d : directions) {
area += dfs(grid, r + d[0], c + d[1]);
}
return area;
}
}

岛屿数量

力扣

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
class Solution {
private int m, n;
private int[][] directions = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};

public int numIslands(char[][] grid) {
if (grid == null || grid.length == 0) {
return 0;
}
m = grid.length;
n = grid[0].length;
int islandsNum = 0;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (grid[i][j] != '0') {
dfs(grid, i, j);
islandsNum++;
}
}
}
return islandsNum;
}

private void dfs(char[][] grid, int r, int c) {
if (r < 0 || r >= m || c < 0 || c >= n || grid[r][c] == '0') {
return;
}
grid[r][c] = '0';
for (int[] d : directions) {
dfs(grid, r + d[0], c + d[1]);
}
}
}

朋友圈

力扣

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Solution {
private int n;

public int findCircleNum(int[][] M) {
n = M.length;
int circleNum = 0;
boolean[] isVisited = new boolean[n];
for (int i = 0; i < n; i++) {
if (!isVisited[i]) {
dfs(M, i, isVisited);
circleNum++;
}
}
return circleNum;
}

private void dfs(int[][] M, int i, boolean[] isVisited) {
isVisited[i] = true;
for (int k = 0; k < n; k++) {
if (M[i][k] == 1 && !isVisited[k]) {
dfs(M, k, isVisited);
}
}
}
}

被围绕的区域

力扣

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
class Solution {
private int[][] directions = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};
private int m, n;

public void solve(char[][] board) {
/**
* 所有和边界相连的0都不能被变为x,先将与边界相连的0变为-,没被变的0就是被围绕的区域。
*/
if (board == null || board.length == 0) {
return;
}
m = board.length;
n = board[0].length;
for (int i = 0; i < m; i++) {
dfs(board, i, 0);
dfs(board, i, n - 1);
}
for (int i = 0; i < n; i++) {
dfs(board, 0, i);
dfs(board, m - 1, i);
}
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (board[i][j] == '-') {
board[i][j] = 'O';
} else if (board[i][j] == 'O') {
board[i][j] = 'X';
}
}
}
}

private void dfs(char[][] board, int r, int c) {
if (r < 0 || r >= m || c < 0 || c >= n || board[r][c] != 'O') {
return;
}
board[r][c] = '-';
for (int[] d : directions) {
dfs(board, r + d[0], c + d[1]);
}
}
}

太平洋大西洋水流问题

力扣

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

//leetcode submit region begin(Prohibit modification and deletion)
class Solution {
private int m,n;
private int[][] matrix;
private int[][] directions = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};

public List<List<Integer>> pacificAtlantic(int[][] matrix) {
/**
* 从边界出发
*/
List<List<Integer>> ret = new ArrayList<>();
if (matrix == null || matrix.length == 0) {
return ret;
}
m = matrix.length;
n = matrix[0].length;
this.matrix = matrix;
boolean[][] canReachP = new boolean[m][n];
boolean[][] canReachA = new boolean[m][n];
for (int i = 0; i < m; i++) {
dfs(i, 0, canReachP);
dfs(i, n - 1, canReachA);
}
for (int i = 0; i < n; i++) {
dfs(0, i, canReachP);
dfs(m - 1, i, canReachA);
}
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (canReachA[i][j] && canReachP[i][j]) {
ret.add(Arrays.asList(i, j));
}
}
}
return ret;
}

private void dfs(int r, int c, boolean[][] canReach) {
if (canReach[r][c]) {
return;
}
canReach[r][c] = true;
for (int[] d : directions) {
int nextr = r + d[0];
int nextc = c + d[1];
if (nextr < 0 || nextr >= m || nextc < 0 || nextc >= n || matrix[r][c] > matrix[nextr][nextc]) {
continue;
}
dfs(nextr, nextc, canReach);
}
}
}

回溯

Backtracking(回溯)属于 DFS。

  • 普通 DFS 主要用在 可达性问题 ,这种问题只需要执行到特点的位置然后返回即可。
  • 而 Backtracking 主要用于求解 排列组合 问题,例如有 { ‘a’,’b’,’c’ } 三个字符,求解所有由这三个字符排列得到的字符串,这种问题在执行到特定的位置返回之后还会继续执行求解过程。

因为 Backtracking 不是立即返回,而要继续求解,因此在程序实现时,需要注意对元素的标记问题:

  • 在访问一个新元素进入新的递归调用时,需要将新元素标记为已经访问,这样才能在继续递归调用时不用重复访问该元素;
  • 但是在递归返回时,需要将元素标记为未访问,因为只需要保证在一个递归链中不同时访问一个元素,可以访问已经访问过但是不在当前递归链中的元素。

电话号码的字母组合

力扣

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
class Solution {
private static final String[] KEYS = {"", "", "abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"};

public List<String> letterCombinations(String digits) {
List<String> combinatios = new ArrayList<>();
if (digits == null || digits.length() == 0) {
return combinatios;
}
doCombination(new StringBuffer(), combinatios, digits);
return combinatios;
}

private void doCombination(StringBuffer prefix, List<String> combinations, final String digits) {
//终止条件
if (prefix.length() == digits.length()) {
combinations.add(prefix.toString());
return;
}
int curDigits = digits.charAt(prefix.length()) - '0';
String letters = KEYS[curDigits];
for (char c : letters.toCharArray()) {
prefix.append(c);
doCombination(prefix, combinations, digits);
//回溯 复原
prefix.deleteCharAt(prefix.length() - 1);
}
}
}

复原ip地址

力扣

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
class Solution {
public List<String> restoreIpAddresses(String s) {
List<String> address = new ArrayList<>();
StringBuilder tempAdress = new StringBuilder();
doRestore(0, tempAdress, address, s);
return address;
}

private void doRestore(int k, StringBuilder tempAdress, List<String> address, String s) {
//终止条件
if (k == 4 || s.length() == 0) {
if (k == 4 && s.length() == 0) {
address.add(tempAdress.toString());
}
return;
}
//三个数字为一个部分
for (int i = 0; i < s.length() && i <= 2; i++) {
if (i != 0 && s.charAt(0) == '0') {
break;
}
String part = s.substring(0, i + 1);
if (Integer.valueOf(part) <= 255) {
if (tempAdress.length() != 0) {
part = '.' + part;
}
tempAdress.append(part);
doRestore(k + 1, tempAdress, address, s.substring(i + 1));
//回溯
tempAdress.delete(tempAdress.length() - part.length(), tempAdress.length());
}
}
}
}

单词搜索

力扣

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
class Solution {
private final static int[][] direction = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
private int m;
private int n;

public boolean exist(char[][] board, String word) {
if (word == null || word.length() == 0) {
return true;
}
if (board == null || board.length == 0 || board[0].length == 0) {
return false;
}
m = board.length;
n = board[0].length;
boolean[][] hasVisited = new boolean[m][n];
for (int r = 0; r < m; r++) {
for (int c = 0; c < n; c++) {
if (backtracking(0, r, c, hasVisited, board, word)) {
return true;
}
}
}
return false;
}

private boolean backtracking(int curLen, int r, int c, boolean[][] hasVisited, final char[][] board, final String word) {
if (curLen == word.length()) {
return true;
}
if (r < 0 || r >= m || c < 0 || c >= n || board[r][c] != word.charAt(curLen) || hasVisited[r][c]) {
return false;
}
hasVisited[r][c] = true;
for (int[] d : direction) {
if (backtracking(curLen + 1, r + d[0], c + d[1], hasVisited, board, word)) {
return true;
}
}
//回溯
hasVisited[r][c] = false;
return false;
}
}

二叉树的所有路径

力扣

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import java.util.ArrayList;
import java.util.List;

/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<String> binaryTreePaths(TreeNode root) {
List<String> paths = new ArrayList<>();
if (root == null) {
return paths;
}
List<Integer> values = new ArrayList<>();
backtracking(root, values, paths);
return paths;
}

private void backtracking(TreeNode node, List<Integer> values, List<String> paths) {
if (node == null) {
return;
}
values.add(node.val);
if (isLeaf(node)) {
paths.add(buildPath(values));
} else {
backtracking(node.left, values, paths);
backtracking(node.right, values, paths);
}
values.remove(values.size() - 1);
}

private boolean isLeaf(TreeNode node) {
return node.left == null && node.right == null;
}

private String buildPath(List<Integer> values) {
StringBuffer str = new StringBuffer();
for (int i = 0; i < values.size(); i++) {
str.append(values.get(i));
if (i != values.size() - 1) {
str.append("->");
}
}
return str.toString();
}
}

全排列

力扣

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import java.util.ArrayList;
import java.util.List;

//leetcode submit region begin(Prohibit modification and deletion)
class Solution {
public List<List<Integer>> permute(int[] nums) {
List<List<Integer>> permutes = new ArrayList<>();
List<Integer> permuteList = new ArrayList<>();
boolean[] hasVisited = new boolean[nums.length];
backtracking(permuteList, permutes, hasVisited, nums);
return permutes;
}

private void backtracking(List<Integer> pemuteList, List<List<Integer>> permutes, boolean[] hasVisited, int[] nums) {
if (pemuteList.size() == nums.length) {
//重新构造一个list?
permutes.add(new ArrayList<>(pemuteList));
return;
}
for (int i = 0; i < nums.length; i++) {
if (hasVisited[i]) {
continue;
}
hasVisited[i] = true;
pemuteList.add(nums[i]);
backtracking(pemuteList, permutes, hasVisited, nums);
pemuteList.remove(pemuteList.size() - 1);
hasVisited[i] = false;
}
}
}

全排列Ⅱ

力扣

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

//leetcode submit region begin(Prohibit modification and deletion)
class Solution {
public List<List<Integer>> permuteUnique(int[] nums) {
List<List<Integer>> permutes = new ArrayList<>();
List<Integer> permuteList = new ArrayList<>();
Arrays.sort(nums);
boolean[] hasVisited = new boolean[nums.length];
backtracking(permuteList, permutes, hasVisited, nums);
return permutes;
}

private void backtracking(List<Integer> permuteList, List<List<Integer>> permutes, boolean[] hasVisited, int[] nums) {
if (permuteList.size() == nums.length) {
permutes.add(new ArrayList<>(permuteList));
return;
}
for (int i = 0; i < nums.length; i++) {
/**
* 去重
* 如果和前一个元素相等且前一个元素没有访问过需要跳过当前元素
* 举例[1,1,2],如果第一个1已经访问过,那第二个1不用跳过,有[1,1,2]这种排列
* 如果第一个1还未访问过,则第二个1在当前位置的情况在第一个1时已经涵盖到了
* 即第一个1已经回溯过了
*/
if (i != 0 && nums[i] == nums[i - 1] && !hasVisited[i - 1]) {
continue;
}
if (hasVisited[i]) {
continue;
}
hasVisited[i] = true;
permuteList.add(nums[i]);
backtracking(permuteList, permutes, hasVisited, nums);
;
hasVisited[i] = false;
permuteList.remove(permuteList.size() - 1);
}
}
}

组合总和Ⅲ

力扣

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import java.util.ArrayList;
import java.util.List;

//leetcode submit region begin(Prohibit modification and deletion)
class Solution {
public List<List<Integer>> combinationSum3(int k, int n) {
List<List<Integer>> combinations = new ArrayList<>();
List<Integer> path = new ArrayList<>();
backtracking(k, n, 1, path, combinations);
return combinations;
}

private void backtracking(int k, int n, int start, List<Integer> path, List<List<Integer>> combinations) {
if (k == 0 && n == 0) {
combinations.add(new ArrayList<>(path));
return;
}
//不符合
if (k == 0 || n == 0) {
return;
}
for (int i = start; i <= 9; i++) {
path.add(i);
backtracking(k - 1, n - i, i + 1, path, combinations);
//回溯
path.remove(path.size() - 1);
}
}
}

子集

力扣

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import java.util.ArrayList;
import java.util.List;

//leetcode submit region begin(Prohibit modification and deletion)
class Solution {
public List<List<Integer>> subsets(int[] nums) {
List<List<Integer>> subsets = new ArrayList<>();
List<Integer> tempSubset = new ArrayList<>();
for (int i = 0; i <= nums.length; i++) {
backtracking(0, tempSubset, subsets, i, nums);
}
return subsets;
}

private void backtracking(int start, List<Integer> tempSubset, List<List<Integer>> subsets, final int size, final int[] nums) {
if (size == tempSubset.size()) {
subsets.add(new ArrayList<>(tempSubset));
return;
}
for (int i = start; i < nums.length; i++) {
tempSubset.add(nums[i]);
backtracking(i + 1, tempSubset, subsets, size, nums);
tempSubset.remove(tempSubset.size() - 1);
}
}
}

子集Ⅱ

力扣

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

//leetcode submit region begin(Prohibit modification and deletion)
class Solution {
public List<List<Integer>> subsetsWithDup(int[] nums) {
Arrays.sort(nums);
List<List<Integer>> subsets = new ArrayList<>();
List<Integer> tempSubset = new ArrayList<>();
boolean[] hasVisited = new boolean[nums.length];
for (int size = 0; size <= nums.length; size++) {
backtracking(0, tempSubset, subsets, hasVisited, size, nums);
}
return subsets;
}

private void backtracking(int start, List<Integer> tempSubsets, List<List<Integer>> subsets, boolean[] hasVisited, final int size, final int[] nums) {
if (tempSubsets.size() == size) {
subsets.add(new ArrayList<>(tempSubsets));
return;
}
for (int i = start; i < nums.length; i++) {
if (i != 0 && nums[i] == nums[i - 1] && !hasVisited[i - 1]) {
continue;
}
tempSubsets.add(nums[i]);
hasVisited[i] = true;
backtracking(i + 1, tempSubsets, subsets, hasVisited, size, nums);
//回溯
tempSubsets.remove(tempSubsets.size() - 1);
hasVisited[i] = false;
}
}
}

分割回文串

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import java.util.ArrayList;
import java.util.List;

//leetcode submit region begin(Prohibit modification and deletion)
class Solution {
public List<List<String>> partition(String s) {
List<List<String>> partitions = new ArrayList<>();
List<String> tempPatition = new ArrayList<>();
doPartition(s, partitions, tempPatition);
return partitions;
}

private void doPartition(String s, List<List<String>> partitions, List<String> tempPatition) {
if (s.length() == 0) {
partitions.add(new ArrayList<>(tempPatition));
return;
}
for (int i = 0; i < s.length(); i++) {
if (isPalindrome(s, 0, i)) {
tempPatition.add(s.substring(0, i + 1));
doPartition(s.substring(i + 1), partitions, tempPatition);
tempPatition.remove(tempPatition.size() - 1);
}
}
}

private boolean isPalindrome(String s, int begin, int end) {
while (begin < end) {
if (s.charAt(begin++) != s.charAt(end--)) {
return false;
}
}
return true;
}
}

解数独

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
class Solution {
private boolean[][] rowsUsed = new boolean[9][10];
private boolean[][] colsUsed = new boolean[9][10];
private boolean[][] cubesUsed = new boolean[9][10];
private char[][] board;

public void solveSudoku(char[][] board) {
this.board = board;
for (int i = 0; i < board.length; i++) {
for (int j = 0; j < board[0].length; j++) {
if (board[i][j] == '.') {
continue;
}
int num = board[i][j] - '0';
rowsUsed[i][num] = true;
colsUsed[j][num] = true;
cubesUsed[cubeNum(i, j)][num] = true;
}
}
backtracking(0, 0);
}

private boolean backtracking(int row, int col) {
while (row < 9 && board[row][col] != '.') {
row = col == 8 ? row + 1 : row;
col = col == 8 ? 0 : col + 1;
}
if (row == 9) {
return true;
}
for (int num = 1; num <= 9; num++) {
if (rowsUsed[row][num] || colsUsed[col][num] || cubesUsed[cubeNum(row, col)][num]) {
continue;
}
rowsUsed[row][num] = colsUsed[col][num] = cubesUsed[cubeNum(row, col)][num] = true;
board[row][col] = (char) (num + '0');
//有解
if (backtracking(row, col)) {
return true;
}
//无解,回溯
rowsUsed[row][num] = colsUsed[col][num] = cubesUsed[cubeNum(row, col)][num] = false;
board[row][col] = '.';
}
return false;
}

private int cubeNum(int i, int j) {
int r = i / 3;
int c = j / 3;
return r * 3 + c;
}
}

N 皇后

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

//leetcode submit region begin(Prohibit modification and deletion)
class Solution {
private List<List<String>> solutions;
private char[][] nQueens;
private boolean[] colUsed;
private boolean[] diagonals45Used;
private boolean[] diagonals135Used;
private int n;

public List<List<String>> solveNQueens(int n) {
solutions = new ArrayList<>();
nQueens = new char[n][n];
for (int i = 0; i < n; i++) {
Arrays.fill(nQueens[i], '.');
}
colUsed = new boolean[n];
diagonals45Used = new boolean[2 * n - 1];
diagonals135Used = new boolean[2 * n - 1];
this.n = n;
backtraking(0);
return solutions;
}

private void backtraking(int row) {
if (row == n) {
List<String> list = new ArrayList<>();
for (char[] chars : nQueens) {
list.add(new String(chars));
}
solutions.add(list);
return;
}
for (int col = 0; col < n; col++) {
int diagonals45Idx = row + col;
int diagonals135Idx = n - 1 - (row - col);
if (colUsed[col] || diagonals45Used[diagonals45Idx] || diagonals135Used[diagonals135Idx]) {
continue;
}
nQueens[row][col] = 'Q';
colUsed[col] = diagonals135Used[diagonals135Idx] = diagonals45Used[diagonals45Idx] = true;
backtraking(row + 1);
//回溯
colUsed[col] = diagonals135Used[diagonals135Idx] = diagonals45Used[diagonals45Idx] = false;
nQueens[row][col] = '.';
}
}
}