判断二分图
力扣地址
题目描述
给定一个无向图graph,当这个图为二分图时返回true。
如果我们能将一个图的节点集合分割成两个独立的子集A和B,并使图中的每一条边的两个节点一个来自A集合,一个来自B集合,我们就将这个图称为二分图。
graph将会以邻接表方式给出,graph[i]表示图中与节点i相连的所有节点。每个节点都是一个在0到graph.length-1之间的整数。这图中没有自环和平行边: graph[i] 中不存在i,并且graph[i]中没有重复的值。
1 2 3 4 5 6 7 8 9 10
| 示例 1: 输入: [[1,3], [0,2], [1,3], [0,2]] 输出: true 解释: 无向图如下: 0----1 | | | | 3----2 我们可以将节点分成两组: {0, 2} 和 {1, 3}。
|
1 2 3 4 5 6 7 8 9 10
| 示例 2: 输入: [[1,2,3], [0,2], [0,1,3], [0,2]] 输出: false 解释: 无向图如下: 0----1 | \ | | \ | 3----2 我们不能将节点分割成两个独立的子集。
|
注意:
graph 的长度范围为 [1, 100]。
graph[i] 中的元素的范围为 [0, graph.length - 1]。
graph[i] 不会包含 i 或者有重复的值。
图是无向的: 如果j 在 graph[i]里边, 那么 i 也会在 graph[j]里边。
题目解答
染色法:如果给定的无向图连通,那么我们就可以任选一个节点开始,给它染成红色。随后我们对整个图进行遍历,将该节点直接相连的所有节点染成绿色,表示这些节点不能与起始节点属于同一个集合。我们再将这些绿色节点直接相连的所有节点染成红色,以此类推,直到无向图中的每个节点均被染色。
如果我们能够成功染色,那么红色和绿色的节点各属于一个集合,这个无向图就是一个二分图;如果我们未能成功染色,即在染色的过程中,某一时刻访问到了一个已经染色的节点,并且它的颜色与我们将要给它染上的颜色不相同,也就说明这个无向图不是一个二分图。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
| from typing import List
class Solution: def isBipartite(self, graph: List[List[int]]) -> bool: colors = [0] * len(graph) valid = True
def dfs(node: int, c: int): nonlocal valid colors[node] = c cNei = 2 if c == 1 else 1 for neighbor in graph[node]: if colors[neighbor] == 0: dfs(neighbor, cNei) if not valid: return elif colors[neighbor] != cNei: valid = False return
for i in range(len(graph)): if colors[i] == 0: dfs(i, 1) if not valid: break return valid
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
| public boolean canFinish(int numCourses, int[][] prerequisites) { List<Integer>[] graphic = new List[numCourses]; for (int i = 0; i < numCourses; i++) { graphic[i] = new ArrayList<>(); } for (int[] pre : prerequisites) { graphic[pre[0]].add(pre[1]); } boolean[] globalMarked = new boolean[numCourses]; boolean[] localMarked = new boolean[numCourses]; for (int i = 0; i < numCourses; i++) { if (hasCycle(globalMarked, localMarked, graphic, i)) { return false; } } return true; }
private boolean hasCycle(boolean[] globalMarked, boolean[] localMarked, List<Integer>[] graphic, int curNode) {
if (localMarked[curNode]) { return true; } if (globalMarked[curNode]) { return false; } globalMarked[curNode] = true; localMarked[curNode] = true; for (int nextNode : graphic[curNode]) { if (hasCycle(globalMarked, localMarked, graphic, nextNode)) { return true; } } localMarked[curNode] = false; return false; }
|
课程表
力扣地址
题目描述
你这个学期必须选修 numCourse 门课程,记为 0 到 numCourse-1 。
在选修某些课程之前需要一些先修课程。 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示他们:[0,1]
给定课程总量以及它们的先决条件,请你判断是否可能完成所有课程的学习?
示例 1:
1 2 3
| 输入: 2, [[1,0]] 输出: true 解释: 总共有 2 门课程。学习课程 1 之前,你需要完成课程 0。所以这是可能的。
|
示例 2:
1 2 3
| 输入: 2, [[1,0],[0,1]] 输出: false 解释: 总共有 2 门课程。学习课程 1 之前,你需要先完成课程 0;并且学习课程 0 之前,你还应先完成课程 1。这是不可能的。
|
提示:
- 输入的先决条件是由 边缘列表 表示的图形,而不是 邻接矩阵 。详情请参见图的表示法
- 你可以假定输入的先决条件中没有重复的边。
- 1 <= numCourses <= 10^5
题目解答
判断是否有环,对我来说关键还是转换为图。。。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
| import collections from typing import List
class Solution: def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool: edges = collections.defaultdict(list) visited = [0] * numCourses result = list() valid = True for info in prerequisites: edges[info[1]].append(info[0])
def dfs(u: int): nonlocal valid visited[u] = 1 for v in edges[u]: if visited[v] == 0: dfs(v) if not valid: return elif visited[v] == 1: valid = False return visited[u] = 2 result.append(u)
for i in range(numCourses): if valid and not visited[i]: dfs(i) return valid
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
| public boolean canFinish(int numCourses, int[][] prerequisites) { List<Integer>[] graphic = new List[numCourses]; for (int i = 0; i < numCourses; i++) { graphic[i] = new ArrayList<>(); } for (int[] pre : prerequisites) { graphic[pre[0]].add(pre[1]); } boolean[] globalMarked = new boolean[numCourses]; boolean[] localMarked = new boolean[numCourses]; for (int i = 0; i < numCourses; i++) { if (hasCycle(globalMarked, localMarked, graphic, i)) { return false; } } return true; }
private boolean hasCycle(boolean[] globalMarked, boolean[] localMarked, List<Integer>[] graphic, int curNode) {
if (localMarked[curNode]) { return true; } if (globalMarked[curNode]) { return false; } globalMarked[curNode] = true; localMarked[curNode] = true; for (int nextNode : graphic[curNode]) { if (hasCycle(globalMarked, localMarked, graphic, nextNode)) { return true; } } localMarked[curNode] = false; return false; }
|
课程表Ⅱ
题目描述
现在你总共有 n 门课需要选,记为 0 到 n-1。
在选修某些课程之前需要一些先修课程。 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示他们: [0,1]
给定课程总量以及它们的先决条件,返回你为了学完所有课程所安排的学习顺序。
可能会有多个正确的顺序,你只要返回一种就可以了。如果不可能完成所有课程,返回一个空数组。
示例 1:
1 2 3
| 输入: 2, [[1,0]] 输出: [0,1] 解释: 总共有 2 门课程。要学习课程 1,你需要先完成课程 0。因此,正确的课程顺序为 [0,1] 。
|
示例 2:
1 2 3 4
| 输入: 4, [[1,0],[2,0],[3,1],[3,2]] 输出: [0,1,2,3] or [0,2,1,3] 解释: 总共有 4 门课程。要学习课程 3,你应该先完成课程 1 和课程 2。并且课程 1 和课程 2 都应该排在课程 0 之后。 因此,一个正确的课程顺序是 [0,1,2,3] 。另一个正确的排序是 [0,2,1,3] 。
|
说明:
输入的先决条件是由边缘列表表示的图形,而不是邻接矩阵。详情请参见图的表示法。
你可以假定输入的先决条件中没有重复的边。
提示:
这个问题相当于查找一个循环是否存在于有向图中。如果存在循环,则不存在拓扑排序,因此不可能选取所有课程进行学习。
通过 DFS 进行拓扑排序 - 一个关于Coursera的精彩视频教程(21分钟),介绍拓扑排序的基本概念。
拓扑排序也可以通过 BFS 完成。
题目解答
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
| class Solution: def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]: edges = collections.defaultdict(list) visited = [0] * numCourses result = list() valid = True
for info in prerequisites: edges[info[1]].append(info[0]) def dfs(u: int): nonlocal valid visited[u] = 1 for v in edges[u]: if visited[v] == 0: dfs(v) if not valid: return elif visited[v] == 1: valid = False return visited[u] = 2 result.append(u) for i in range(numCourses): if valid and not visited[i]: dfs(i) if not valid: return list() return result[::-1]
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
| public int[] findOrder(int numCourses, int[][] prerequisites) { List<Integer>[] graphic = new List[numCourses]; for (int i = 0; i < numCourses; i++) { graphic[i] = new ArrayList<>(); } for (int[] pre : prerequisites) { graphic[pre[0]].add(pre[1]); } Stack<Integer> postOrder = new Stack<>(); boolean[] globalMarked = new boolean[numCourses]; boolean[] localMarked = new boolean[numCourses]; for (int i = 0; i < numCourses; i++) { if (hasCycle(globalMarked, localMarked, graphic, i, postOrder)) { return new int[0]; } } int[] orders = new int[numCourses]; for (int i = numCourses - 1; i >= 0; i--) { orders[i] = postOrder.pop(); } return orders; }
private boolean hasCycle(boolean[] globalMarked, boolean[] localMarked, List<Integer>[] graphic, int curNode, Stack<Integer> postOrder) {
if (localMarked[curNode]) { return true; } if (globalMarked[curNode]) { return false; } globalMarked[curNode] = true; localMarked[curNode] = true; for (int nextNode : graphic[curNode]) { if (hasCycle(globalMarked, localMarked, graphic, nextNode, postOrder)) { return true; } } localMarked[curNode] = false; postOrder.push(curNode); return false; }
|